分类
机器学习 深度学习

如何解决神经网络训练时loss不下降的问题

当我们训练一个神经网络模型的时候,我们经常会遇到这样的一个头疼的问题,那就是,神经网络模型的loss值不下降,以致我们无法训练,或者无法得到一个效果较好的模型。导致训练时loss不下降的原因有很多,而且,更普遍的来说,loss不下降一般分为三种,即:训练集上loss不下降,验证集上loss不下降,和测试集上loss不下降。这里,首先默认各位都能理解过拟合和欠拟合的概念,如果有不清楚的可以参考下面的一些文章。

分类
机器学习 深度学习

深度学习:欠拟合问题的几种解决方案

我最近做深度学习在连续中文语音识别方向的应用的时候,根据一些论文和网上一些公开代码和模型结构,设计了一个神经网络的模型。但是在训练的时候,就首先遇到了很让人头疼的欠拟合问题。神经网络欠拟合的特征是,训练了很长时间,但是在训练集上,loss值仍然很大甚至与初始值没有太大区别,而且精确度也很低,几乎接近于0,在测试集上亦如此。且先不管模型结构配置的优劣,就欠拟合问题来说,需要从如下方面来着手。

分类
机器学习

机器学习:过拟合与欠拟合问题

过拟合(overfitting)与欠拟合(underfitting)是统计学中的一组现象。过拟合是在统计模型中,由于使用的参数过多而导致模型对观测数据(训练数据)过度拟合,以至于用该模型来预测其他测试样本输出的时候与实际输出或者期望值相差很大的现象,。欠拟合则刚好相反,是由于统计模型使用的参数过少,以至于得到的模型难以拟合观测数据(训练数据)的现象。