分类
ASRT 后端开发 智能语音技术 模式识别 深度学习

ASRT:一个中文语音识别系统

ASRT是一套基于深度学习实现的语音识别系统,全称为Auto Speech Recognition Tool,由AI柠檬博主开发并在GitHub上开源(GPL 3.0协议)。本项目声学模型通过采用卷积神经网络(CNN)和连接性时序分类(CTC)方法,使用大量中文语音数据集进行训练,将声音转录为中文拼音,并通过语言模型,将拼音序列转换为中文文本。算法模型在测试集上已经获得了80%的正确率。基于该模型,在Windows平台上实现了一个基于ASRT的语音识别应用软件,取得了较好应用效果。这个应用软件包含Windows 10 UWP商店应用和Windows 版.Net平台桌面应用,也一起开源在GitHub上了。

分类
ASRT 机器学习 自然语言处理

统计语言模型:从中文拼音到文本

前言:

自然语言是信息的载体,记录和传播着信息,信息论之父香农对信息的定义是“信息是用于消除随机不确定性的东西”。信息通过编码,经过一定的信道传输,然后传递到接收者,再解码成对应的可被人理解感知的东西,就完成了一次信息的传递。原始人的通信方式就是说话,而说话是先将信息编码为对应的语言信号,可以是文本,可以是声音,也可以就是中文拼音,然后接收者再将收到的信号进行解码。而我们人类对自然语言的处理经历了从基于规则的算法到基于统计的算法,显然基于统计的方法比规则更有效,下面我将介绍一种基于统计的语言模型,可以实现从拼音转为文本。

分类
ASRT 自然语言处理

统计N元语言模型生成算法:简单中文词频统计

做自然语言处理有一个基本的步骤是词频统计,然而我们知道,中文的词语有单音节词、双音节词和多音节词之分,所以中文处理起来远比英文复杂得多。不过,我们可以“偷个懒”,如果要做词频统计的文本量足够大,而且我们只需要知道词频最高的几个词的话,那么我们可以将问题简化一下。