分类
ASRT 后端开发 应用开发 深度学习

深度学习模型最佳部署方式:用Python实现HTTP服务器作API接口

点击量:194

    当训练和测试完成一个深度学习模型之后,如果我们打算将这个算法模型上线,投入生产环境部署使用,那么我们就需要做一些额外的处理工作。由于深度学习模型对于算力需求较大,在上线过程中,一般有减小网络规模、使用专用硬件和通过C/S架构联网进行云端计算这三种方式。AI柠檬博主推荐使用第三种方式,即模型部署于服务器端,客户端通过网络将输入数据发送至服务器,计算得结果后传递给客户端。5G时代就在眼前,IPv6协议大规模部署,万物即将互联,尤其是无线移动互联网作为重要的基础设施是大势所趋。通过联网,即使是成本最低的低端的硬件,也可以在不损失精度的情况下,能够以更快的速度得到深度学习模型的计算结果。例如,ASRT语音识别系统就是以这种方式进行模型的部署的,已经能够为AI柠檬网站提供语音识别服务,用于语音搜索等任务。

分类
机器学习 深度学习

一文看懂循环神经网络基本原理

点击量:73

RNN是循环神经网络的缩写,并且也是循环网络结构中的一种,我们通常使用这种网络模型来处理序列型的数据。语音识别处理的就是一个典型的有时间顺序的序列数据,自然语言文本也是。在一个普通的DNN网络中,层与层之间是全连接的,而每层中的神经元节点之间不存在任何连接,这样的一种普通DNN网络结构难以解决很多问题。以语音识别为例,不同时刻t的语音包含的字,在推理计算时,需要根据上下文来确定应该输出为什么字符,而且结果应当跟具体所在时刻t无关,否则会出现不同时间说相同的字会产生不同的识别输出的问题。

    循环网络就解决了这个问题,这有点类似于隐马尔可夫模型,对于每一时刻的输入,所产生的输出值,不仅仅依赖于当前时刻t,还依赖于前N个时刻的输出值。这主要是通过在每一个循环层单元中,添加了一个记忆单元实现的。

分类
机器学习 深度学习

卷积神经网络相关计算总结,都在这了

点击量:108

卷积神经网络是模式识别分类常用的网络结构之一,在大规模的图像识别等方面有着很大的优势。本文将总结卷积层、反卷积层、感受野、权重参数数量等卷积神经网络相关的原理和计算过程。

分类
智能语音技术 深度学习

[论文分享]迁移学习实现基于预算的语音识别

点击量:108

Kunze, Julius, et al. “Transfer learning for speech recognition on a budget.” arXiv preprint arXiv:1706.00290 (2017).

大家好,本次我要分享的论文是Transfer Learning for Speech Recognition on a Budget

分类
模式识别 深度学习

[论文翻译] Dropblock:一个用于卷积网络的正则化方法

点击量:98

GolnazGhiasi, Tsung-YiLin, QuocV.Le
Google Brain

摘要

当深度神经网络被过度参数化并经过大量噪声和正则化训练(例如权重衰减和dropout)时,它们通常可以很好地工作。尽管Dropout被广泛用作全连接层的正则化技术,但对于卷积层而言,效果通常较差。卷积层Dropout的不太成功可能是由于以下事实:卷积层中的激活单元在空间上相关,因此尽管有丢失,信息仍可以通过卷积网络流动。因此,需要结构化的Dropout形式来规范卷积网络。在本文中,我们介绍了DropBlock,这是一种结构化的Dropout形式,其中特征图的连续区域中的单元被一起Drop掉。我们发现,在卷积层之外的跳过连接中应用DropbBlock可以提高准确性。同样,在训练过程中逐渐增加的Drop单元数量会产生更佳的准确性和对超参数选择的鲁棒性。大量的实验表明,在正则化卷积网络中,DropBlock的效果要优于Dropout。在ImageNet分类中,带有DropBlock的ResNet-50体系结构可实现78.13%的准确度,比基线提高了1.6%以上。在COCO检测时,DropBlock将RetinaNet的平均精度从36.8%提高到38.4%。

分类
机器学习 模式识别 深度学习

[论文分享]Dropblock:一个用于卷积网络的正则化方法

点击量:67

Ghiasi, Golnaz, Tsung-Yi Lin, and Quoc V. Le. “Dropblock: A regularization method for convolutional networks.” Advances in Neural Information Processing Systems. 2018.

卷积层Dropout的不太成功可能是由于以下事实:卷积层中的激活单元在空间上相关,因此尽管有丢失,信息仍可以通过卷积网络流动。所以我们需要使用一个新的可以用于卷积层的Drop方法。

分类
模式识别 深度学习

[翻译]生成对抗网络

点击量:213

本文为论文 Generative Adversarial Nets 的翻译文

论文原文链接: https://arxiv.org/abs/1406.2661

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, Yoshua Bengio§

Departement d’informatique et de recherche op´ erationnelle´

Universite de Montr´ eal´

Montreal, QC H3C 3J7´

分类
模式识别 深度学习

西电华为俱乐部演讲:深度学习的应用

点击量:287

近日,AI柠檬博主在西电华为俱乐部进行了关于深度学习应用相关的演讲,与各位同学分享深度学习的发展和最新应用,以下是演讲的全部PPT内容。

分类
模式识别 深度学习

tensorflow 2.0实现mnist手写数字识别

点击量:381

最近这一段时间,TensorFlow 2.0发布,这是你从没有体验过的全新的版本,为了能够尽快接触和体验到2.0新版本的特性,AI柠檬博主从mnist手写数字识别Demo入手,开始学习TensorFlow 2.0版。由于tf2原生内置keras包,无需另外安装,本样例将以tf.keras代码实现,并且在这一过程中发现,原本的keras代码仅需极少数改动即可迁移到TensorFlow 2.0,这对于之前一直使用Keras的用户来说,可谓非常友好了。

分类
ASRT 智能语音技术 模式识别 深度学习

ASRT语音识别程序依赖环境说明

点击量:684

ASRT语音识别项目是AI柠檬博主于2017年初开始着手实现的一个开源项目。由于本项目从最初第一个可用版发布到现在已经有较长时间了,在软件的依赖包方面,已经与两年前有了很大的不同,本文将介绍ASRT项目在程序运行的依赖环境上的一些问题,供参考,如果后续有变化,会及时更新。几乎所有基于TensorFlow 1.x版本和Keras的程序都可以参考本文的配置。